Structural analysis of the ribosome-associated complex (RAC) reveals an unusual Hsp70/Hsp40 interaction.
نویسندگان
چکیده
Yeast Zuotin and Ssz are members of the conserved Hsp40 and Hsp70 chaperone families, respectively, but compared with canonical homologs, they atypically form a stable heterodimer termed ribosome-associated complex (RAC). RAC acts as co-chaperone for another Hsp70 to assist de novo protein folding. In this study, we identified the molecular basis for the unusual Hsp70/Hsp40 pairing using amide hydrogen exchange (HX) coupled with mass spectrometry and mutational analysis. Association of Ssz with Zuotin strongly decreased the conformational dynamics mainly in the C-terminal domain of Ssz, whereas Zuotin acquired strong conformational stabilization in its N-terminal segment. Deletion of the highly flexible N terminus of Zuotin abolished stable association with Ssz in vitro and caused a phenotype resembling the loss of Ssz function in vivo. Thus, the C-terminal domain of Ssz, the N-terminal extension of Zuotin, and their mutual stabilization are the major structural determinants for RAC assembly. We furthermore found dynamic changes in the J-domain of Zuotin upon complex formation that might be crucial for RAC co-chaperone function. Taken together, we present a novel mechanism for converting Zuotin and Ssz chaperones into a functionally active dimer.
منابع مشابه
A dual function for chaperones SSB–RAC and the NAC nascent polypeptide–associated complex on ribosomes
The yeast Hsp70/40 system SSB-RAC (stress 70 B-ribosome-associated complex) binds to ribosomes and contacts nascent polypeptides to assist cotranslational folding. In this study, we demonstrate that nascent polypeptide-associated complex (NAC), another ribosome-tethered system, is functionally connected to SSB-RAC and the cytosolic Hsp70 network. Simultaneous deletions of genes encoding NAC and...
متن کاملThe ribosome-associated complex antagonizes prion formation in yeast
The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in mod...
متن کاملMultivalent contacts of the Hsp70 Ssb contribute to its architecture on ribosomes and nascent chain interaction
Hsp70 chaperones assist de novo folding of newly synthesized proteins in all cells. In yeast, the specialized Hsp70 Ssb directly binds to ribosomes. The structural basis and functional mode of recruitment of Ssb to ribosomes is not understood. Here, we present the molecular details underlying ribosome binding of Ssb in Saccharomyces cerevisiae. This interaction is multifaceted, involving the co...
متن کاملHsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions.
Self-templating amyloid forms of Sup35 constitute the yeast prion [PSI(+)]. How the protein-remodelling factor, Hsp104, collaborates with other chaperones to regulate [PSI(+)] inheritance remains poorly delineated. Here, we report how the Ssa and Ssb components of the Hsp70 chaperone system directly affect Sup35 prionogenesis and cooperate with Hsp104. We identify the ribosome-associated Ssb1:Z...
متن کاملInteraction of the cotranslational Hsp70 Ssb with ribosomal proteins and rRNA depends on its lid domain
Cotranslational chaperones assist in de novo folding of nascent polypeptides in all organisms. In yeast, the heterodimeric ribosome-associated complex (RAC) forms a unique chaperone triad with the Hsp70 homologue Ssb. We report the X-ray structure of full length Ssb in the ATP-bound open conformation at 2.6 Å resolution and identify a positively charged region in the α-helical lid domain (SBDα)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 285 5 شماره
صفحات -
تاریخ انتشار 2010